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ABSTRACT

Decision Transformer (DT) has emerged as a powerful paradigm for decision mak-
ing by formulating offline Reinforcement Learning (RL) as a sequence modeling
problem. While recent studies have started to investigate how Decision Transform-
ers can be extended to online settings, online finetuning with pure RL gradients
remains largely underexplored: most existing approaches continue to prioritize su-
pervised sequence modeling losses during the online phase. We identify hindsight
return relabeling—a component widely used in online DTs—as a key obstacle that,
while beneficial for supervised objectives, hinders the performance of importance
sampling-based RL algorithms such as PPO and GRPO. In this work, we present a
new algorithm that enables online finetuning of Decision Transformers purely with
reinforcement learning gradients. Our approach represents a novel adaptation of
the classical GRPO algorithm to the online finetuning of Decision Transformers.
To make GRPO efficient and compatible with DTs, we incorporate several key
modifications, including sub-trajectory sampling, sequence-likelihood objectives,
and an active sampling strategy. We conduct extensive experiments across diverse
benchmarks and show that, on average, our method significantly outperforms exist-
ing online finetuning approaches such as ODT and ODT+TD3. This opens a new
direction for advancing the online finetuning of Decision Transformers.

1 INTRODUCTION

Transformers (Vaswani et al.,|2017) have become the dominant architecture across a wide range of
domains. In large language models (LLMs), a powerful training paradigm has emerged: supervised
pretraining on large-scale unlabeled corpora, followed by finetuning and reinforcement learning
(Radford et al., [2018}; Brown et al.| 2020; Ouyang et al., [2022])). Inspired by this success, Decision
Transformer (DT) (Chen et al., 2021) introduced the transformer architecture into decision making
problems, offering a new approach that formulates RL as sequence modeling. Unlike conventional
RL methods, DT is trained entirely offline with a supervised objective on collected trajectories,
effectively functioning as a variant of imitation learning (Hussein et al., [2017) conditioned on a
pre-specified value of the initial return-to-go (RTG).

Its online variant, ODT (Zheng et al.|[2022), further extended this approach by enabling online finetun-
ing after pretraining. ODT collects online trajectories and use hindsight return relabeling, replacing
the (pre-specified) RTGs of the online trajectories with the actual achieved returns. The purpose of
this hindsight return relabeling is to align the RTG distribution of online trajectories with that of
the offline dataset, since both offline pretraining and online finetuning optimize the same sequence
modeling objective. And recent work augmenting it with TD3 (Fujimoto et al,, 2018) gradients
to achieve state-of-the-art performance (Yan et al|2024). However, existing approaches to online
finetuning of DT remain dominated by supervised objectives: ODT relies solely on supervised loss,
while ODT+TD3 combines it with TD3 gradients. Yet, recent breakthroughs in LLMs demonstrate that
purely reinforcement learning gradients like Proximal Policy Optimization (PPO) and Group Relative
Policy Optimization (GRPO) can fundamentally enhance a transformer’s reasoning capabilities (Shao
et al.| 2024} Team, 2025} | Yang et al., 2024)). This trend naturally raises a natural and critical question:

Can we conduct online finetuning of Decision Transformers with pure RL gradients?
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To investigate this question, we first revisit the training paradigm of existing online variants of DT
and uncover a core challenge. We find that hindsight return relabeling deployed by existing online
variants such as ODT and ODT+TD3 actually hinders the application of on-policy RL algorithms that
rely on importance sampling. Specifically, hindsight return relabeling introduces a critical mismatch
between the return-to-go during online interaction and the training phase, which ultimately impairs
model performance. Removing this component is the necessary premise for applying importance
sampling based algorithms to DTs as shown in

Building on this key insight, we develop a new algorithm for online finetuning DTs with pure RL
gradients. Specifically, we adapt GRPO, an algorithm that has demonstrated remarkable effectiveness
in LLM reasoning, to the characteristics of conventional RL environments. Our method incorporates
several critical modifications: (1) a sub-trajectory based training objective that mitigates estimation
variance and improves credit assignments—an aspect known to be challenging for standard GRPO;
(2) environment resetting techniques (Mhammedi et al., 2024} Yin et al.| 2023) to provide consistent
initial states; (3) sequence-level importance ratios that enhance efficiency and stability; (4) active
selection that encouraging exploration where the policy is uncertain. With the above adaptations,
our GRPO achieves state-of-the-art performance in online finetuning of Decision Transformers.
Moreover, for scenarios where environment resetting is not feasible, training an auxiliary Q-function
to substitute the resetting process still yields decent results. Additionally, we also apply PPO to DTs,
showing its ability to improve pretrained DTs as well.

Our adapted GRPO achieves higher rewards, requires no auxiliary critic, and is more computationally
efficient as it requires much less gradient updates compared to previous methods. Moreover, unlike
methods such as ODT+TD3 that modify the pretraining loss and train an extra Q-function while
pretraining, our approach can directly finetune most pretrained DT-style models with minimal

changes (see for experiments).

Contributions. We summarize our main contributions below:

(i) We identify hindsight return relabeling as the key obstacle that prevents effective finetuning
of Decision Transformers with PPO/GRPO.

(i) We introduce GRPO-DT, an adaptation of GRPO for Decision Transformers that integrates
sub-trajectory optimization, sequence-level importance ratios, and active state sampling,
enabling pure-RL finetuning of Decision Transformers.

(iii) We conduct extensive experiments and show that online finetuning DT with pure RL gradi-
ents can achieve new state-of-the-art results on several benchmarks.

Paper organization. The rest of the paper is organized as follows. [Section 2|reviews preliminaries
on DT, GRPO and related concepts. [Section 3|elaborates our proposed method. presents
experiments and results. [Section 5|and[Section 6|provide related work and conclude paper respectively.

2 PRELIMINARIES

Markov Decision Process. We formulate the reinforcement learning problem as a Markov Decision
Process (MDP), defined by a tuple (S, A, P, R, ). Here, S is the state space, A is the action space,
P(sp+1 | 8h,an) denotes the transition dynamics, R(sp, ap) is the immediate reward, and y € [0, 1]
is the discount factor. Ateach step h = 1,..., H, the agent observes s;, € S and selects an action
ap, € A according to a policy, either stochastic 7(ay,|sp,) or deterministic 4(sy,). The environment
then transitions to sp+1 ~ P(:|sn,an) and yields a reward r, = R(sp, ap). A trajectory is thus
(s1,a1,71,-..,SH,am,7H), and the objective of reinforcement learning is to maximize the expected

discounted return E, [25:1 yh‘lrh} )

Decision Transformers. Decision Transformer (DT) is a powerful paradigm for offline reinforce-
ment learning, formulating decision making as a sequence modeling problem. Instead of relying on
temporal-difference errors, DT reframes offline RL into a supervised learning setting. A DT sequence
consists of three types of tokens: return-to-go (RTG), state, and action. The RTG at step h, denoted
gh, represents the cumulative reward from step i onward. DT leverages a GPT-style architecture
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(Radford et al.l 2018) to autoregressively learn a deterministic policy from pre-collected trajectories.
In practice, DTs are trained on fixed-length trajectory segments rather than full episodes: let K
denotes the context length, the DT learns to generate the next action a;, based on past interactions
(Jh—K 41 Sh—K+1,@h—K+1, - - - y h, Sh) Of context length K. The model is trained via supervised
learning by minimizing the mean squared error (MSE) between the predicted action and the ground-
truth action. During evaluation and deployment, the learner specifies a desired initial RTG g, since
the ground-truth future RTG isn’t known in advance, and leverages the DT to autoregressively
generate the next action and interact with the environment.

Online Finetuning of Decision Transformers. ODT extends DT into the online setting. After
pretraining, it continues training while interacting with the environment, collecting trajectories that
gradually replace the offline buffer. ODT learns a stochastic Gaussian policy conditioned on past
returns, states, and actions:

molan | S—k.n, 8-k a—i,h—1) = N0 (S—k.h, 8—Kin A— K h—1), D0 (S— K b, 8— K hs A K h—1))

where 6 denotes the policy parameters, 3¢ is the diagonal covariance matrix, — K, h means past K
steps before h. However, Yan et al. (2024) pointed out that because ODT models actions conditioned
on desired returns, it actually learns Ogﬁ how actions change as the target return varies. However,

what drives online policy improvement is agTG how returns respond to action adjustments (see
section 3.1 in|Yan et al.| (2024) for more details). |Yan et al.[(2024)) thus propose ODT+TD3, which

augments ODT loss with TD3 gradients to provide ()EIG to guide online exploration, which is

particularly crucial when the offline dataset is of low quality. However, they still prioritize supervised
ODT loss as their main training objective.

Group Relative Policy Optimization (GRPO). GRPO is initially proposed in DeepSeek-
math(Shao et al., [2024)) for Large Language Models(LLMs) post-training. It bypasses the need
for value model by computing the relative advantage of each response within a group of responses
given the same query. Specifically, the model generates a group of responses 0g, 01, . . . , 0 from the
old policy g, for each question ¢ sampled from the question set ). For each response o;, a reward
r; is specified. Then the policy model is optimized by maximizing the following objective:

Jerro(mg) = E

Gzlzl

(O]
a~Q {ai} L~ old €T

|evi R (1
z:mm{w”1 Az,cllp(wlh(é’),l—a,l—i—e) A; — 8Dk [ || ﬂref]} ,
h=1

where G is the number of generated responses to each query ¢, importance ratio w; ,(6) =

mo(@inlg:0n<n) and the advantage of i-th rollout A; = ri*?ea“,({,r_l’” ra})
TOoid (i, p a0 < h) std({r1,72,,rG})

3 METHODS

This section is organized as follows. We first analyze the limitations of prior attempts at online
finetuning Decision Transformers with importance sampling based algorithms (e.g., PPO/GRPO) and
present our solutions. Based on this we describe our adaptation of GRPO to reinforcement learning
environments, highlighting several key modifications to naive GRPO.

3.1 REMOVING HINDSIGHT RETURN RELABELING

When deploying DTs, the learner must specify a desired initial RTG, since the ground-truth future
RTG is unknown in advance. In Online Decision Transformer (ODT), the learner typically sets a
relatively high target RTG gyign during rollout to encourage optimistic exploration. During training,
a key component of ODT—known as hindsight return relabeling—replaces the intended RTG ghigh
with the actually achieved RTG gyelabel (Zheng et al.| [2022).

This hindsight return relabeling, while necessary for sequence modeling to align the distribution
of RTG from offline dataset with online trajectories (see Fig. 5.4 inZheng et al.|(2022) for details),
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Figure 1: Examples of GRPO with and without some of our key designs. (a) compares reward
curves with and without hindsight return relabeling when processing sampled sub-trajectories. (b)
compares the learning process of our adapted GRPO (using sub-trajectories) against naive GRPO
(using complete trajectories). (c) shows the effect of using consistent states when sampling a group
versus not. (d) illustrates the difference in the learning process when computing the importance
ratio using sequence likelihood versus token likelihood. (e) compares the learning process with and
without active selection for sampling reset points.

actually introduces inconsistencies of RTGs between rollout and training phases, which hinder
effective on-policy optimization. This means the policy generates actions conditioned on an
optimistic RTG target during rollout, but the same actions are later trained against a trajectory labeled
with the actually achieved (and often smaller) RTG. This creates a discrepancy in the conditioning
variable: the policy is effectively asked to maximize likelihood under goals it never explicitly
conditioned on during execution. Actions are drawn under moi4(als, gnigh) but later trained as if they
came from 7i4(als, grelabel ), the importance weights then become unreliable, undermining stable
on-policy optimization. This also explains why naive attempts at applying standard PPO to ODT
fails in|Yan et al.| (2024} (Appendix C in their paper).

To address this, one must carefully align rollout conditioning with training objectives. In our practice,
we simply store the intended RTGs alongside each trajectory to preserve consistency. Our ablation
experiments in[Fig. Ta|demonstrate that without such modification, applying importance sampling
based algorithms to ODT remains unstable. In relatively simple environments such as Hopper, the
policy may initially improve but eventually collapses. In more complex environments such as Door,
the policy fails to learn altogether.

3.2 ADAPTING GRPO TO DECISION TRANSFORMERS

Our method adapts GRPO to Decision Transformers by training on sub-trajectories instead of full
trajectories used in original GRPO. At each iteration, the policy interacts with the environment to
collect full trajectories, from which we sample reset points and generate groups of sub-trajectories
under corresponding conditions. The sub-trajectories within the same group are then assigned
normalized advantages with[Eq. (2)] These sub-trajectories and their advantages are finally used
to update the policy with This also aligns the finetuning process with the sub-trajectory
modeling paradigm when pretraining DTs. The details of our training pipeline are described in
Algorithm 1]

Compared to the vanilla GRPO, our method introduces four key design modifications to better align
with the Decision Transformer framework and continuous control setting. Specifically, (i) we redesign
the optimizing objective by operating on sub-trajectories rather than full rollouts, (ii) we ensure the
consistency of initial states when generating sub-trajectories by resetting environments to the same
corresponding state (iii), we compute importance weights at the sequence level to match the unit of
reward, and (iv) we incorporate an active selection mechanism that prioritizes uncertain states for
optimization. We elaborate on each of these design choices below.
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Algorithm 1 Decision Transformers with GRPO (GRPO-DT)

Input: Pretrained policy mg, complete trajectory buffer Treplay, sub-trajectory buffer 7q,p, expected
initial RTG gg, total rounds 7', number of reset points in a trajectory K, sub-trajectory length
Lyraj, evaluation steps Leyal, group size G, discount factor .

1: forroundt =1,--- ,7 do

2:  Rollout complete trajectory 7 using current policy 7y (+|so, go), conditioned on initial state sg
and RTG go; update 'ﬁep]ay with 7). // Collect complete policy; buffer updated in a FIFOQ
manner.

Sample a minibatch G from Trepiay With probability p(7) = S

for each 7 € G do

Sample K reset points {s,, }5-_; from action-variance distribution.

For each reset point sy, , generate G sub-trajectories {szb & | with the current policy

7]

Sk w

g, ; evaluate the quality of each sub-trajectory to get reward R(TZSb). // Sub-trajectory
generation and evaly\ation.

7: Compute advantage A(TZ‘;b) for each sub-trajectory using // Compute advantages
for GRPO. N

8: Update sub-trajectory buffer Tqyp with {(75"°, A(75"°))}), // Buffer updated in a FIFO
manner.

9:  Finetune the current policy with sub-trajectories in 7, and[Eq. (3)|to get a new policy 7y, , .

(1) Optimization on sub-trajectories. In its original formulation to train LLMs, GRPO assigns a
single response-level reward to each generated response, with every token sharing the same reward.
A direct adaptation to continuous control problems would be to aggregate all stepwise rewards in
a rollout and assign advantages computed based on this trajectory-level return to each step, but
this method leads to poor performance (Fig. Ib). This limitation is expected, as reinforcement
learning tasks—particularly those in continuous control—require more precise credit assignment
than language modeling. Whereas tokens in a sentence tend to be coherently correlated, actions in
RL can lead to drastically different outcomes (e.g., distinct action choices when navigating a maze).

To address this, we adopt a sub-trajectory formulation: from the policy’s action distribution we
sample a segment of length Ly, and then continue the rollout deterministically by taking the mean
action (or the most probable action in the discrete case) for another L,y steps. The cumulative
discounted reward over these Liraj + Leval Steps is attributed to the preceding sub-trajectory and then
used to compute advantages within a group with[Eq. (2)]

~ TZ‘:b — mean({riﬂb7 rng .. ,7'2‘“2‘ } &
k‘i -
std({ri‘ib, ri‘ib _ 77"2[:2‘ b

Only the sub-trajectory of length Ly,; is used for GRPO optimization, while the subsequent Ley,|
steps are used solely for evaluation. The parameter Ly, controls the granularity of credit assignment,
whereas L, determines the quality of reward estimation. Empirically, we find that a smaller Li;
combined with a larger Le,a yields the best performance; see[Section 4.3] for detailed ablations on
these hyperparameters.

(2) Providing consistent states. GRPO requires rollouts within the same group to be conditioned
on the same prompt, which in continuous control corresponds to starting from the same environment
state. If sub-trajectories originate from different states but are grouped together when computing
advantages with[Eq. (2)} their returns become incomparable and training fails to converge as shown
in|Fig. Ic| We therefore enforce state consistency by resetting vectorized environments to specified
states before generating sub-trajectories. This reset mechanism is crucial for stable optimization.

Environment resets are supported in many important domains—including perfect-information games
(e.g., Go, Chess), LLM reasoning tasks (Kazemnejad et al.|[2024)), and widely used simulator-based
RL benchmarks (Mhammedi et al., [2024). Recent theoretical and empirical work also shows that
incorporating reset operations can substantially improve sample efficiency and policy performance in
online RL (Mhammedi et al., 2024} [ Yin et al.l [2023)). Our method follows this established line of
work. In scenarios where resetting is infeasible, we find that evaluating multiple candidate actions
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under the same state with a learned Q-function that is trained following TD3 (Fujimoto et al., 2018)),
and applying GRPO at action level (see for details) yields decent results.

(3) Sequence-level importance ratio. In naive GRPO, importance weights are computed at the
token level, reflecting stepwise likelihoods. However, in our setting advantages are defined for the
entire sub-trajectories, making token-level ratios misaligned with the unit of reward. This motivates
us to forego the token-level objective and explore utilizing importance weights and performing
optimization at the sequence level. We therefore compute importance ratios directly on sub-trajectories
with[Eq. (3)] ensuring consistency between the objective and the advantage signal. Note that[Eq. (T)]
and differ primarily in their optimization granularity: the former operates at the token level,
whereas the latter is defined at the sequence level. This sequence-level importance ratio improves
both stability and efficiency as shown in[Fig. Id] This is in line with the concurrent work (Zheng
et al.,[2025).

N sub sub

1 1,05, 94 > . + 2,05 Y1 N
Jerro () = NZ{min [ mo. (77""151.0, 9i0) Ai,chp< mo. (77" 151.0, 91.0) ,1—e¢,1 +€> A;

P T4 (T52]54,05 9i,0) T0010 (T30 51,0, 9i,0)

— BDxLlmo,| |7r,ef]} +rHo(als, g). 3)

_ et (75]51,0,91.0) Tref (75°]54,0,95.0) 1 ;
where Dxr, [, ||7ref] = o (1550 05'0) log N G Py 1 is the KL-penalty, and Hy(als, g)

denotes the entropy regularization term. Following ODT, its coefficient « is treated as a trainable
parameter to better balance exploration and exploitation.

(4) Active selection. During action generation, we observe that certain timesteps exhibit high
variance in the predicted action distribution. When sampling actions, this variance leads to diverse
generated actions, suggesting that the policy is uncertain about which action to take. As a result,
improving behavior specifically on these states is beneficial and aligns with prior findings showing
that prioritizing uncertain regions can accelerate policy improvements (Yin et al.,2023). at these steps.
To address this, we introduce a simple yet effective technique called active selection. Concretely,
for a given complete trajectory, we apply a softmax transformation to the action variance sequence

cxp(of )

VLo exp(o?)
points from this distribution to determine where to initiate sub-trajectory generation. Empirically, as
shown in [Fig. Te] our active selection mechanism outperforms variants without it.

across timesteps using p; = to yield a probability distribution. We then sample reset

4 EXPERIMENT

In this section, we aim to answer the following questions:

(i) Do pure RL gradients provide better signals compared with methods that prioritize super-
vised loss during DT online finetuning?

(i) How does each component in our method affect the performance?
The model architecture and hyperparameter setting can be found in[Appendix A.3.1

4.1 EXPERIMENT SETUP

Tasks and datasets. We evaluate methods on three continuous control and manipulation environments
from D4RL (Fu et al.,|2020): (i) MuJoCo (Todorov et al.,|2012) tasks, including Hopper, Walker2d,
and Ant, with dense rewards, evaluated on the medium, medium-replay, and random datasets. (ii)
Adroit manipulation tasks (Rajeswaran et al.l 2017)), including Door, Hammer, and Pen, evaluated
on the human and cloned datasets. (iii) Antmaze (Fu et al., 2020) with sparse goal-reaching rewards
(areward of 1 if success and 0 otherwise), using the umaze and umaze-diverse datasets. Detailed

descriptions of each environment and dataset are provided in[Appendix A.T]

Baselines. In our experiments, we mainly compare both our adapted GRPO-DT and PPO-DT with
three baselines: ODT (Chen et al., 2021)), the widely adopted online version of Decision Transformer
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Table 1: Average reward for each method. The best performance and results > 99% of the best result
is bold. Results > 90% of the best result are underlined. The name of the environments and datasets
are abbreviated as follows: Ho=Hopper, Wa=Walker2d, An=Ant, U=Antmaze-umaze, UD=Antmaze-
umaze-diverse, D=Door, P=Pen, H=Hammer; for the datasets M=Medium, MR=Medium-Replay,
R=Random, C=Cloned, H=Human. The format is "final (standard deviation)”.

DT IQL ODT TD3+0ODT PPO-DT GRPO-DT
MuJoCo Ho-R-v2 1.98 41.02(13.35)  30.43(0.01) 83.32(8.46)  106.97(0.96)  99.20(3.80)
(random) Wa-R-v2 4.59 22.75(1.55) 10.88(0.34)  82.95(18.28)  108.69(8.86)  100.25(33.19)
An-R-v2 30.38 58.69(23.03)  19.08(3.97) 80.58(7.25) 107.45(22.83)  120.69 (5.47)
Average 12.32 40.82 20.13 82.28 107.70 106.71
Ho-M-v2 63.1 74.19(20.25)  98.02(0.63)  101.47(229) 105.65(5.43) 108.81(0.85),
Ho-MR-v2 29.76 96.97 (2.16) 87.73(0.59)  107.94(2.29)  109.60(1.63)  83.61(20.75)
MuJoCo Wa-M-v2 70.78 103.45(1.37)  76.49(0.78)  103.27(5.95) 109.49(9.04)  158.34(3.75)
(medium)  Wa-MR-v2 58.06 103.00(2.65)  74.21(2.41)  102.80(2.68) 117.45(14.79) 137.36(5.64)
An-M-v2 90.58 118.18(2.42)  90.71(0.03)  131.56(0.41)  139.84(0.95) 147.51(2.44)
An-MR-v2 78.15 117.51(0.82)  83.63(0.87)  120.01(2.94) 117.95(2.54) 142.05(3.32)
Average 65.07 102.21 85.13 111.175 116.66 129.61
D-C-vl 4.97 46.72(0.30) 1.26(1.02) 79.98 (5.62) 0.19(0.00) 96.41 (7.59)
D-H-vl 9.30 11.27(0.44) 8.76 (3.87) 79.73 (4.37) 94.12(3.99)  89.33(10.12)
Adroit P-C-vl 75.02 63.09(14.38)  16.24(5.12)  109.86(6.27)  27.14(0.24)  111.15(2.61)
P-H-v1 95.23 24.94 (1.48) 19.84(7.42) 77.18 (7.42) 9.92(5.00) 85.11(6.08)
H-C-vl 1.80 4.87(3.10) 1.32(0.06) 119.95(2.45)  130.60(2.81)  140.45(1.93)
H-H-vl 1.01 1.04 (1.56) 0.91(0.22) 120.93(2.18)  129.23(2.18)  132.64 (12.56)
Average 31.22 25.15 8.06 97.93 65.2 109.18
Antmaze U-v2 16.00 91.21(2.14) 89.27(3.73) 99.64(0.20) 0.00(0.00) 96.07 (0.53)
UD-v2 38.00 0.00 (0.00) 63.81(1.64) 99.42 (0.43) 47.00 (4.00) 97.70(2.67)
Average 27 45.61 76.54 99.53 23.50 96.89

with supervised loss as online finetuning objective; ODT+TD3 (Yan et al.,|2024)), the current state-of-
the-art method for online finetuning of Decision Transformer; IQL (Kostrikov et al.| [2021)), a popular
offline algorithm which also has an online variant.

Metrics. We use the normalized average reward of 3 random seeds according to D4rl’s statistic
(Fu et al., [2020) where higher rewards represent better performance. Meanwhile, we also present
the learning curves which shows the change of the normalized rewards with respect to the training
iterations. When presenting the curves, we set the x-coordinate to be the number of iteration.
This variable is the round from line 3 of the Algorithm. 1 from ODT [Zheng et al.| (2022) paper.
Note that conventional x-axis metrics, such as the number of online transitions (indicating sample
efficiency) and the number of gradient updates (indicating computational cost), are not suitable for
our setting. For gradient updates, ODT/ODT+TD3 requires nearly two orders of magnitude more
updates per iteration compared to our PPO-DT/GRPO-DT; for online interactions, our GRPO-DT
and PPO-DT consume several to tens of times more samples than ODT/ODT+TD3. Hence, neither
metric provides a fair comparison. When evaluate, we conduct evaluation after the gradient updates
of the corresponding iteration. Thus, even at iteration 0, all methods have already undergone several
updates, during which their behaviors may diverge and produce different outcome.

PPO-DT implementation. Our PPO-DT implementation follows the practice of CleanRL (Huang
et al.} |2022). Unlike prior work that applies PPO to multi-agent reinforcement learning (MARL)
tasks with Decision Transformer (Meng et al., 2023)), we train the critic using A-returns rather
than discounted Monte Carlo returns, and store the action probabilities at sampling time instead of
recomputing them during training.

4.2 MAIN RESULTS

reports the normalized returns and standard deviations over three random seeds for each
method. Overall, our GRPO-DT achieves the best performance across most tasks. PPO-DT also
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Figure 2: Results on part of the environments and datasets. Our adapted GRPO-DT perform the best
on most of the environments and dataset. ODT+TD3 and PPO-DT yield competitive results on most
of the environments while ODT and IQL keeps converge on local optimum.

performs competitively in many cases. ODT+TD3 obtains reasonable results, while ODT and IQL
consistently underperform, particularly on tasks with low-quality pretraining data such as the random
datasets and on challenging domains like Adroit. Note that as we perform longer training iterations as
mentioned in the results for ODT+TD3 are better than the reported ones from the original
paper (Yan et al., [2024]).

Low offline data quality. The first part in shows results when pretrained with offline data of
low quality. We observe that both our adapted GRPO-DT and PPO-DT perform significantly better
on random datasets. Since these datasets consist of trajectories generated by an untrained random
policy, pretraining on them initializes the agent with poor or even harmful biases, often causing the
policy to collapse or converge to suboptimal solutions. Our results indicate that GRPO-DT and
PPO-DT exhibit stronger robustness to such low-quality pretraining, achieving superior asymptotic
performance compared to baselines. In contrast, ODT—relying purely on supervised learning
signals—fails to escape local optima, and IQL suffers from similar limitations.

Medium data quality. The rest parts of present results when pretrained with offline data of
decent quality. For the MuJoCo environments, our GRPO-DT and PPO-DT achieves best results
while ODT+TD3 is competitive and ODT/IQL performs reasonably. In Adroit, where state and action
spaces are substantially larger and more complex, policies are highly prone to degradation or collapse
during finetuning. Under these conditions, ODT and IQL fail to improve pretrained policies, whereas
our GRPO-DT consistently achieves high returns, demonstrating strong exploration and stability.
ODT+TD3 demonstrates competitive performance on some environments, but falls short of matching
the robustness of our approach in some cases. PPO-DT, while strong on some environments, fails
to improve on other cases. Training longer or incorporating additional techniques such as reward
shaping may alleviate this but we leave it for future work. For Antmaze environment where reward is
sparse, ODT+TD3 achieves best results while our GRPO-DT performs competitively. Other methods
fail to improve the policy.

Advantages over previous methods. Our GRPO-DT offers several advantages over prior ap-
proaches besides final performance. First, unlike methods that rely on an auxiliary critic, our
approach requires no additional networks, making it simpler to implement. Second, by leveraging
accurate gradient estimation through sub-trajectory sampling, our method is more computationally
efficient, requires much less gradient updates per iteration. For example, our method requires 8 x 256
gradient updates per iteration while ODT/ODT+TD3 typically requires 256 x 300, much higher than
our method. Finally, it can finetune any pretrained DT-style model with minimal modifications
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Figure 3: Panel (a) shows ablation on sub-trajectory length Li.;. Both longer and shorter sub-
trajectory length lead to inferior results. Panel (b) shows ablation on evaluation steps Leyai. Inadequate
evaluation steps lead to model collapse. Panel (c) shows training with our variant described in

It achieves decent results.

(see[Appendix A.5|for experiments), whereas prior methods such as ODT+TD3 require altering the
offline pretraining loss to incorporate RL gradients in some cases and training an auxiliary Q-function
simultaneously during pretraining, which prevents them from directly finetuning an already pretrained
model.

4.3 ANALYSES AND ABLATIONS

We provide additional analyses and ablation studies in this section. Empirical evidence supporting

the key design choices in has been presented in[Fig. 1]

Ablation on sub-trajectory length. Sub-trajectory in our method represents the unit for assigning
advantage. Thus its length is crucial to our algorithm. Empirical results in confirm that
increasing sub-trajectory length destabilizes training and leads to inferior outcomes. However,
excessively short sub-trajectories, while stable, also yield sub-optimal results. This is likely because
very short trajectories sampled from the same state distribution are overly homogeneous, limiting
their ability to provide informative learning signals.

Ablation on sub-trajectory evaluation steps. For each sub-trajectory, we extend the rollout with
additional evaluation steps ranging from 30 to 400, depending on the environment. As illustrated
in longer evaluation rollouts enable more reliable assessment of sub-trajectory quality and
consequently improve performance.

Using Q function to replace sub-trajectory generation. In scenarios where resetting the environ-
ment is infeasible, we instead train an auxiliary Q function and apply GRPO with [Algorithm 2] As
shown in this approach still achieves decent performance.

5 RELATED WORK

Transformers for RL. With transformers becoming the dominant architecture in both CV and NLP,
a growing number of transformer-based approaches have been proposed in the RL. community (Lin
et al.l 2023} |Chen et al., |2022} [Yuan et al.| [2024). Owing to their strong capability in modeling
sequential dependencies (Parisotto & Salakhutdinovl, [2021)), transformers are naturally suited for
reinforcement learning when formulated as a sequence modeling problem (Chen et al.l|2021; Janner
et al.| 2021; Wang et al.| |2022). In this paradigm, models typically condition on past states, actions,
and returns to autoregressively predict future actions. However, such approaches rely on offline
datasets and often suffer from issues of data scarcity and out-of-distribution problem. This motivates
the offline pretraining followed by online finetuning paradigm. Nevertheless, existing works either
treat supervised objectives as the primary training signal when tuning transformers online (Zheng
et al., 2022} |Yan et al., [2024)), rely on Q-learning rather than transformer-based architectures (Lee
et al.l 2022; [Zheng et al.| [2023} [Song et al., 2022; [Yu & Zhang|, 2023 Nair et al.| |2020), or are
situated in MARL settings (Meng et al., |2023)). In contrast, our work focuses on online finetuning of
offline-pretrained decision-making transformers using purely RL-based gradients.

RL for transformers. Reinforcement learning has also emerged as a powerful technique for aligning
and enhancing large language models (LLMs) (Ouyang et al.l 2022; [Lee et al., 2023). A wide
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spectrum of algorithms has been explored, ranging from policy gradient methods such as PPO, to
off-policy methods like Implicit Language Q-Learning (ILQL) (Snell et al., 2022)) and VerifierQ
(Q1 et al., 2024), as well as reward-model-free methods such as DPO (Ratfailov et al., [2023) and
KTO (Ethayarajh et al.,2024). More recently, novel algorithms such as GRPO and approaches like
ReFT (Luong et al.||2024) have been proposed to further improve the reasoning ability of LLMs. RL
methods have also been applied to transformer-based multi-modal models (Liu et al., [2025} |Shen
et al., [2025). However, the strategies designed for training LLMs cannot be directly transferred to
finetuning Decision Transformers, as decision-making tasks fundamentally differ from language
generation in terms of environment dynamics, reward distributions, and optimization objectives. To
this end, our work adapts RL algorithms widely adopted in LLMs, specifically GRPO and PPO, to
the context of finetuning Decision Transformers.

6 CONCLUSION

We presented a systematic study on applying pure RL gradients for online finetuning of Decision
Transformers. We identified hindsight return relabeling as the key obstacle for methods featuring
importance ratio, and introduced GRPO-DT with modifications including sub-trajectory training,
environment resetting, and sequence-level importance ratios to enable critic-free and efficient finetun-
ing of pretrained DT-style models. In addition, we implemented PPO for DTs (PPO-DT), showing
that pure RL gradients in online stage substantially improve DTs across diverse benchmarks.

Limitations and future work. While effective, our methods assume environment resetting and
may face challenges in sparse-reward or very long-horizon tasks. Moreover, long rollouts slows
down the training process especially when evaluation steps are relatively long. Our method also
requires extensive hyperparameter tuning when deployed to a new environment. Future work includes
developing reset-free strategies, scaling to more complex domains, and combining our approach with
stronger architectures and exploration techniques to further enhance robustness and generalization.
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A APPENDIX

A.1 ENVIRONMENTAL AND DATASET DETAILS

A.1.1 MuJoCo ENVIRONMENTS

We conduct our experiment on three MuJoCo environments:

* Hopper. Hopper is a MuJoCo-based single-legged locomotion task where the agent controls
three joints to make the robot hop forward while maintaining stability. The action space
is 3-dimensional continuous, corresponding to torques applied at the joints, each bounded
within [—1,1]. The observation space has 11 dimensions, consisting of positional and
velocity information. At each timestep, the reward is a combination of survival bonus,
forward progress, and a control cost penalty proportional to the squared magnitude of the
action. Episodes terminate when the agent falls or reaches the maximum horizon (default
1000 steps).

» Walker2d. Walker2D is a 2D bipedal walking robot task where the agent controls six joints
to make the robot walk forward steadily. The action space is a 6-dimensional continuous
vector (torques in [—1, 1]) applied to hinge joints. The observation space has 17 dimensions.
At each timestep, the agent receives a reward composed of (i) a “healthy” survival bonus,
(ii) a forward progress reward proportional to the displacement in the x-direction, and (iii) a
control cost penalty proportional to the magnitude of the action. Episodes terminate if the
robot becomes unhealthy (e.g. torso height out of range, non-finite states) or reaches the
maximum horizon.

* Ant. The Ant task is a 3-dimensional locomotion problem where the agent controls an
8-joint quadruped to move forward while maintaining balance. The action space is an
8-dimensional continuous vector (typically bounded in [—1,1]). The observation space
comprises the robot’s positional and velocity state (and sometimes contact observations).
Each timestep the agent receives a reward combining a forward-progress term (displacement
in the x-axis), a control cost penalty (proportional to the squared action magnitude), and
often an alive bonus. Episodes terminate when the ant falls or the time horizon (default
1000) is reached.

The size and normalized return of each offline dataset is presented in|lable 2

Table 2: The size and normalized rewards of offline datasets used in MuJoCo environments.

Dataset Size Normalized Reward
Hopper-medium-v2 999906 44.32+£12.27
Hopper-medium-replay-v2 402000 14.98+£16.32
Hopper-random-v2 999906 1.194+1.16
Walker2d-medium-v2 999995 62.09+£23.83
Walker2d-medium-replay-v2 302000 14.841+19.48
Walker2d-random-v2 999997 0.01+0.09
Ant-medium-v2 999946 80.30£35.82
Ant-medium-replay-v2 302000 30.95+31.66
Ant-random-v2 999930 6.36+10.07

A.1.2 ADROIT ENVIRONMENT

We choose three Adroit environments to experiment:

* Door. The Door task requires a 28-DoF hand-arm system to unlatch and open a door.
The action space is 28-dimensional continuous, with each joint command scaled to [—1, 1]
The observation space has 39 dimensions, including joint states, latch status, and relative
positions between the hand and handle. The dense reward combines distance penalties,
velocity regularization, and bonuses for increasing door hinge displacement, encouraging
successful door opening.
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* Hammer. The Hammer task involves a 28-DoF robotic hand-arm system (a 24-DoF
ShadowHand plus a 4-DoF arm) that must pick up a hammer and drive a nail into a board.
The action space is 26-dimensional continuous, representing joint commands (scaled into
[—1, 1]. The observation space is 46-dimensional, encoding joint states, poses of the hammer
and nail, and forces on the nail. The reward combines terms for progress in driving the nail
(hinge displacement or insertion depth), penalties on control magnitude, and distance-based
cost.

* Pen. The Pen task requires a 24-degree-of-freedom robotic hand to manipulate a pen into
a target orientation. The action space is 24-dimensional continuous, with joint commands
scaled to [—1, 1] for each actuator. The observation space is 45-dimensional, including
joint states, pen pose, and the goal orientation. The reward is composed of a negative
penalty proportional to the Euclidean distance between the pen and target, an orientation
similarity term (dot product between real and target orientation), proximity bonuses when
both distance and angular alignment are sufficiently tight, and a dropping penalty if the pen
falls.

The corresponding offline dataset quality can be found in[Table 3]

Table 3: The size and normalized rewards of offline dataset used in Adroit environment.

Dataset Size Normalized Reward
Pen-cloned-v1 499886 108.63+ 122.43
Pen-human-v1 4800 202.69+ 154.48
Hammer-cloned-v1 999872 8.11+ 23.35
Hammer-human-v1 10948 23.804 33.36
Door-cloned-v1 999939 12.29+ 18.35
Door-human-v1 6504 28.354+ 13.88

A.2 ANTMAZE ENVIRONMENT

The Umaze environment in Antmaze places an Ant quadruped in a U-shaped maze. The action
space is 8-dimensional continuous, with torques in [—1, 1]. The observation space is a goal-aware
dictionary: a 27-dimensional “observation” vector (positions and velocities of the Ant body parts),
plus 2D achieved goal and desired goal vectors indicating the Ant’s torso position and the target goal
in the plane. The reward provide is sparse: O if the ant hasn’t reached its final target position, and 1 if
the ant is in the final target position (the ant is considered to have reached the goal if the Euclidean
distance between both is lower than 0.5 m). The quality of the offline datasets used is presented in

Table 41

Table 4: The size and the average and standard deviation of the normalized reward of the Antmaze
datasets used in our experiments.

Dataset Size Normalized Reward
Antmaze-Umaze-v2 998573 86.14+ 34.55
Antmaze-Umaze-Diverse-v2 999000 3.48+ 18.32

A.3 EXPERIMENTAL DETAILS
A.3.1 HYPERPARAMETERS

shows the hyperparameters that are common across all our experiments and sum-
marizes the domain-specific hyperparameters for each environment and dataset for GRPO-DT. For

antmaze-environment, following ODT+TD3’s (Yan et al., |2024) practice, We remove all 1-step
trajectories, because the size of the replay buffer for decision transformers is controlled by the number
of trajectories, and antmaze dataset contains a large number of 1-step trajectories due to its data
generation mechanism (immediately terminate an episode when the agent is close to the goal, but do
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not reset the agent location). And we did not add positional embedding as suggested by ODT (Zheng
et al., [2022).

For GRPO-DT, we collect 1 complete trajectory for replay buffer per iteration in MuJoCo and
Antmaze environments and 5 complete trajectories each iteration in Adroit environments. The buffer
size for the complete trajectories is 32. When doing resetting, we sample 16 trajectories from the
complete trajectories buffer. We choose four reset points for each trajectory and the group size
for each trajectory is 8. This results in 512 sub-trajectories per iteration. The buffer size for this
sub-trajectories is 2048.

For PPO-DT, we collect 8 trajectories for MuJoCo and Antmaze environment and 8 or 16 trajectories
for Adroit each iteration. The buffer size is 4 times of the number of trajectories collected per iteration.
Following ODT+TD3’s practice, we add Layernorm (Ba et al., 2016) to the critic of PPO-DT in
Adroit and Antmaze environment to stabilize training process. summarizes the architecture

used in PPO-DT, and additional environment-specific hyperparameters appear in

For the Q-function-guided GRPO-DT, we conduct experiments on Ant-medium-v2 and Walker2d-
medium-replay-v2. We generally follow the hyperparameter settings of ODT+TD3 for training the
Q-functions. Specifically, the critic learning rate is set to 1 x 1073, the discount factor +y is 0.99, the
policy noise has mean 0 and standard deviation 0.1, and is clipped within (—0.5,0.5). The target
critic and policy are updated with a step size of 0.005. For each state, we sample 64 actions from the
predicted policy distribution and assign rewards to them using the learned Q-function. The advantages
of GRPO-DT are then computed within each action group. The policy learning rate is 1 x 1073,
with a KL coefficient of 0.001 and an entropy coefficient of 0.01.

For ODT+TD3 and ODT baselines, we use their original code and parameter setting respectively. For
IQL baseline, we generally follow ODT+TD3’s implementation, but set pretraining steps to the same
as other baselines in our experiments for fair comparison.

Table 5: The common hyperparameters in our experiments.

Hyperparameters Value
Number of layers 4
Number of attention heads 4
Embedding dimension 512
Actor Optimizer LAMB (You et al.| |2019)
Dropout 0.1 when pretraining, disabled when finetuning
Nonlinearity function SiLU (Elfwing et al., 2018)
Weight decay 0.0001
Gradient norm clip 0.5
Target entropy -dim(A)
PPO Critic layer 2
PPO Critic hidden size 256 for Mujoco, 512 for others
PPO Critic activation SiLU
PPO Critic Optimizer AdamW (Loshchilov & Hutter, [2017)

A.4 GRPO WITH Q FUNCTION

In this section we introduce GRPO with Q, an action-level variant of our method designed for settings
where environment resets are infeasible. Instead of generating multiple sub-trajectories from the
same state, our method samples a group of actions under the current policy for each visited state
and evaluates them with an auxiliary Q-function. The resulting Q-values are normalized to provide
advantages, which are then used to optimize the policy via the GRPO objective. Meanwhile, the
Q-function is updated following standard TD3 practice. This design preserves the core idea of
group-based policy optimization while eliminating the need for environment reset.

A.5 TRAINING WITH OTHER ARCHITECTURE

To evaluate the generality of our algorithm, we further apply it to other DT-style architectures. Rein-
former (Zhuang et al.,|2024) is a max-return sequence modeling approach for offline reinforcement
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Table 6: The hyperparameters that we use to finetune DT with GRPO-DT in each domain, where
Tirain and Te,q; stands for context length for training and evaluation, 7 is the discount factor, I,
represents learning rate for the actor, Lyy,; and L, q; Tepresent sub-trajectory length and evaluation
steps for each sub-trajectory respectively, € is Clipping threshold,ecrpo is the minimum deviation
of a sub-trajectory’s raw reward from the mean reward of its group, ETPR is the initial entropy
temperature for online finetuning.

Environ BS Ttrain  Teval RTG ¥ Irq Liraj Leval € earro ETPR
Ho-M(R) 256 20 1 7200 0.995 Se-5 15 400 0.2 2.0 0.20
Ho-R 256 20 1 7200 0.995 Se-5 15 400 0.2 2.0 0.20
Wa-M(R) 256 20 1 10000 0.995 Se-5 15 400 0.3 2.0 0.04
Wa-R 256 20 1 10000 0.995 Se-5 15 400 0.3 2.0 0.20
An-M(R) 256 20 1 12000 0.995 Se-5 15 200 0.3 2.0 0.04
An-R 256 20 1 12000 0.995 Se-5 15 200 0.3 2.0 0.20
D-C 512 5 1 3000 0.99 3e-5 10 100 0.3 0.5 0.10
D-H 512 5 1 3000 0.99 3e-5 10 100 0.3 0.4 0.04
P-C 512 5 1 6000 0.99 3e-5 3 30 0.3 0 0.02
P-H 512 5 1 6000 0.99 3e-5 3 30 0.3 0 0.02
H-C 512 5 5 4000 0.99 3e-5 10 100 0.3 0 0.05
H-H 512 5 5 4000 0.99 3e-5 10 100 0.3 0.8 0.05
U 256 5 1 2 1.0 Se-5 10 200 0.2 0 0.05
UD 256 1 2 1.0 Se-5 10 200 0.2 0 0.05

Table 7: The hyperparameters that we use to finetune DT in each domain with PPO-DT, where
CLiygin and C L., stands for context length for training and evaluation, lr, represents learning
rate for the actor and [r, is the learning rate for the critic, nppo is the number of online trajectories
sampled each iteration, ETPR is the initial entropy temperature for online finetuning. The discount
factor v is 0.99, clipping range parameter ¢ is 0.2 and GAE- A is 0.95.

Environ BS CLtrain CLecyal RTG lre lrg nppo ETPR
Ho-M(R) 256 20 1 7200 le-3 Se-5 8 0.02
Ho-R 256 20 1 7200 le-3 5e-5 8 0.04
Wa-M(R) 256 20 1 10000 le-3 5e-5 8 0.02
Wa-R 256 20 1 10000 le-3 Se-5 8 0.20
An-M(R) 256 20 1 12000 le-3 Se-5 8 0.02
An-R 256 20 1 12000 le-3 Se-5 8 0.02
D-C 512 5 1 3000 2e-4 3e-5 16 0.002
D-H 512 5 1 3000 2e-4 3e-5 16 0.002
P-C 512 5 1 6000 2e-4 3e-5 8 0.04
P-H 512 5 1 6000 2e-4 3e-5 8 0.04
H-C 512 5 5 4000 2e-4 3e-5 16 0.005
H-H 512 5 5 4000 2e-4 3e-5 16 0.005

u 256 5 1 2 le-3 5e-5 8 0.02
UuD 256 1 5 2 le-3 5e-5 8 0.02

learning. It integrates the RL objective of return maximization into supervised sequence modeling by
using expectile regression to predict the in-distribution maximum return, which then guides optimal
action generation. This method enhances trajectory stitching capability and achieves state-of-the-
art performance among sequence models on the D4RL benchmark, particularly on tasks requiring
learning from suboptimal data. The training process of applying GRPO-DT to this architecture is

presented in
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Figure 4: Applying our GRPO-DT to Reinformer

16



Under review as a conference paper at ICLR 2026

Algorithm 2 GRPO with Q (action-level variant)

Input: Pretrained policy 7, trajectory buffer Trepiay, auxiliary Q-function @4, total rounds 7', group
size GG, discount factor ~.
1: forroundt =1,--- ,T do
2:  Rollout trajectory 7 using current policy mg(:|s, g); update Treplay With 7. // Trajectory
collection with FIFO buffer update.
3:  Sample a minibatch G from 7yepiay With probability p(7) o |7].
4 for each 7 € G do
5: For each state sy, in 7, sample G actions {a;}$ 1 ~ 7 (:|sn, gn)-
6.
7

Evaluate each sampled action with Q4 (sp, ap.;)-

Normalize scores {Qg(Sh, an,;)} to obtain advantages { Ay, ; }. // Action-level evaluation
with Q-function. .

Update policy 7y using GRPO objective with advantages { A}, ;}.

Update Q4 following TD3-style critic learning.

o ®

A.6 THE USE OF LARGE LANGUAGE MODELS (LLMS)

LLMs were used to polish the writing of this paper.
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